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Development of mathematical imagination of 3-
dimensionalpolyhedra throughout history and in-
version phenomena13

Alexander Heinz

Abstract.This presentation deals with the historical development of the math-
ematical imagination of 3-dimensional polyhedra and inversion phenomena.
It is only possible to conceive the laws of geometrical forms objectively in
thought. As a rule, these thoughts are formed through observation (descrip-
tion, illustration, or object) based on sensory or inner perception. The ob-
server’s perception is determined through his spatial standpoint in relation to
the object he observes. Regular and semi-regular polyhedra are good exam-
ples of geometrically stable phenomena, introduced here as sensory objects in
the form of descriptions, illustrations and as objects. The historical descrip-
tions of polyhedra, examples and objects, are compared here from each spatial
position of the observer towards the object under observation.
Different standpoints give one-sided and mutually opposing perceptions and
interpretations of space (e.g. inner as opposed to outer). Only a comprehensive
overview can show the totality of spatial forms of a polyhedron, thereby re-
vealing a spatial structure. Examples from the history of architecture complete
the comparisons. Plato’s descriptions of regular solids and the Archimedean
solids are compared with the accounts from the Renaissance (Leonardo da
Vinci, Albrecht Dürer) and the discovery of the polar-Archimedean solids. An
excursus on the history of architecture (Greek temple, basilica) completing
the initial comparisions leads to a further comparison (pyramid, stone circle;
or stone balls and a projection of regular polyedra).
In this second step, it is shown how polar-opposite ideas of space can be
dynamically combined as a metamorphosis. If rhythmically developed, these
metamorphoses appear cyclically. They can be shown as forms turned inside-
out, through which, observing in thought, space is turned inside-out, or «in-
verted». With this at the same time a comprehensive concept of space is de-
scribed. Paul Schatz was one of the first to recognise the importance of this,
demonstrable through special mobile models of the Platonic solids. He dis-
covered inversion, a completely new kinesmatic kind of movement, different
from translation and rotation. At the same time, he gave the bases for some
initial technical applications out of inversion, which are presented at the end
(OLOID technology, turbula).
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Introduction
Spatial consciousness is not a mathematical category, but a necessary prerequisite for
comprehending mathematics and geometry. Geometry, though independent of space and
time, can only be conceived in space and time. Consequently, it is relevant to speak of
a historical development of geometrical discoveries. An aspect of this development are
the presentations of regular polyhedra at various times in different cultural ages. Here
I assume that a spatial consciousness corresponds to the respective presentation. If the
special manner of a presentation depends on the degree of spatial consciousness, then
retrospective appreciation of a spatial presentation rests on the spatial consciousness that
comprehends it. If laws can be found in the historical development, these can shed light
on present and future perspectives.

Greek civilisation and the Renaissance
Plato’s approach, Archimedes

Plato (427—347 B.C.) was the first to describe the five regular polyhedra. In his dialogue
Timaeus he argues how, out of two kinds of triangles, four polyhedra are formed, and a
fifth is mentioned. In the same way the Archimedean solids can be formed, but for this
two or three kinds of polygons are used. If this is recreated in the imagination, then all
kinds of convex, regular and semi-regular polyhedra arise. Observer and object face each
other. The object presenting its exterior to the observer is perceived as convex. With Plato
and Archimedes (c. 287 to 212 B.C.) these presentations remain as descriptions.

Figure 46: From triangles, into polygons, into polyhedra; after Plato (Timaeus)
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Figure 47: Archimedean solids

Rome

Originating in Roman times, bronze dodecahedra are known on which the corners are
emphasised through ball-like elements; the centres of the surfaces are open. The observer
can see into them, yet, because of their size, he/she remains outside the objects.

Renaissance: Leonardo, Dürer

In Leonardo da Vinci’s (1452—1519) illustrations to Fra Luca Paciouli’s (1445— post
1503) Divina proportione (1509), the regular polyhedra-along with others-are closed and
moreover presented as models with edges, that is, open. In contrast to the Roman do-
decahedra, Leonardos’s dodecahedron with edges opens wider. The observer — in his
imagination — can see through the polyhedron.

In his book Unterweisung der Messung (1525) Albrecht Dürer (1471—1528) goes
a step further. He draws the regular, and most of the semi-regular polyhedra on a plan,
advising the reader or observer to trace the patterns and construct the models out of paper.
If this is done, then as an observer one looks from inside the polyhedron. If large enough,
it can entirely enclose the observer, who then can experience it as concave, not as convex.

Consequently, according to the spatial standpoint of the observer, polyhedra can be
experienced as convex spatial bodies as well as concave; the later perception demands
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Figure 48: Bronze dodecahedron, Rome

Figure 49: Leonardo’s dodecahedron; illustration for Pacioli’s Divina proportione, 1509
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Figure 50: Albrecht Dürer’s dodecahedron plan, 1525

to a higher degree his/her imaginative involvement. For the semi-regular solids a simi-
lar situation applies. The Archimedean solids are easy to construct out of polygons. The
polar-Archimedean solids do not allow themselves to be constructed in this way without
the exact knowledge of the respective lengths of the edges and relationships of the angles
of the surfaces. An exact knowledge of the polar-Archimedean solids has to be acquired
along with the concept of polarity. In this way Eugéne Charles Catalan (1814—94) de-
scribed them completely for the first time.

Two things can be recognised in both these examples of «concave» and «polar» —
they demand the ability to imagine spatially more strongly than the descriptions of ei-
ther Plato or Archimedes. This corresponds to the thesis presented at the outset, of the
development of the ability to conceive and think. On the other hand, the contrary stand-
points of the two examples show polar relationships. The convex and concave conceptions
face each other as earlier and later discoveries, in the same way as the discoveries of the
Archimedean and polar-Archimedean were discovered earlier and later.

Excursus on the history of architecture

In a similar way basilica and Greek temple face each other. The temple has its pillars
outside and its walls inside, which with the basilica is reversed.

Frank Teichmann (1937—2006) taking up a suggestion of Rudolf Steiner (1861—
1925) researched this phenomenon in detail in a comprehensive 4-volume work, the de-
tails of which cannot be discussed here. Here these examples serve only to gain a view of
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Figure 51: Polar-Archimedean or Catalanian solids

Figure 52: Temple and basilica: contrasting principles
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the relationship of the observer to his/her object. With temple and basilica inner and outer
change places.

Egyptian and Western European Stone Age

Cultural-historical aspects

Before comparing temple and basilica, Teichmann compares Western European Stone
Age and ancient Egyptian culture. He concludes that both cultures, which existed at ap-
proximately the same time, distinguished themselves in their diversity, as it were sys-
tematically. The pyramid is distinguished by its perfect geometrical construction, which
draws the attention towards itself (centre). The stone circle, constructed for the main part
with roughly hewn stones, serves observation of the heavens. It only receives its mean-
ing through its arrangement in the landscape and to the starry constellations, drawing the
attention of the observer to the distance (periphery).

The polar relationship between pyramid and stone circle as examples for the basic
tone of the respective culture touch on the different directions into which the observer is
drawn — with the pyramid to the inside, with the stone circle to the outside (these con-
trasts show many other aspects that cannot be discussed here; see Teichmann). It is worth
noting here that the interior of the pyramid (centre), as well as the heavenly phenomena
(periphery) remain unreachable for the observer.

With Teichmann, one can see the Greek temple is formed out of a well-balanced
mixture of both elements of construction (pyramid and stone circle): the pillars are taken
as if from the stone circle, and the inner sanctuary from the pyramid.

Carved stone balls

In the British Isles, mainly in Scotland, carved stone balls were found which are distin-
guished through rich geometrical ornamentation. The balls were probably made c. 2,000
years before Plato. The forms of these balls show relationships to the regular, and other
polyhedra. They appear to be composed of several small balls, which represent the corners
or the surfaces of the related polyhedra.

These artifacts give the impression to the observer, as if the stonemason had not
managed to complete the ball into a polyhedron. The forms appear as incomplete. The pro-
fusely carved amorphous ornamentation reinforces this impression. Similar to the place-
ment of the stones, which points towards the periphery, the forces of form of the stone
balls are not brought to completion in straight edges and flat surfaces.

Metatron’s cube

A further presentation of the regular solids arises out of the projection of the regular
polyhedra along the threefold axes of symmetry into a pattern of a sixfold series of circles,
or through an infolded construction of the edges of the polyhedra. For this, particular
points connect with each other. This method, with which all regular polyhedra can be
constructed as projections, is also called Metatron’s cube. The observer does not perceive
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Figure 53: Stone circle, pyramid; temple

a polyhedron, but only a projection. In its formal strictness, this presentation recalls the
pyramids.

Polarities in comparing Egypt with the Stone Age, and Greece with the Renaissance

In contrasting the representative buildings of Egypt with the Stone Age and Greece with
the West, parallels can be drawn to the contrasting of Metatron’s cube with the stone balls,
and the Platonic solids with the presentations of Leonardo and Dürer.

Neither with the stone balls nor with Metatron’s cube do we reach the polyhedra
with straight edges, pointed corners and level surfaces. Both emphasise different aspects
of space, which on their own do not form a clear spatial structure. The stone balls empha-
sise the outer, the projections the centre. Only in the polyhedra of Plato and Archimedes
do both meet to form a clear spatial structure.

This is the prerequisite for the laying hold of further thoughts in which opposites
mutually depend, e.g. the polar relationships of the regular polyhedra to each other in the
respective number of corners and surfaces, or the relationships of the Archimedean to the
polar-Archimedean solids.
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Figure 54: Carved stone balls, Scotland, c. 2,500 B.C.

Figure 55: Metatron’s cube
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Metamorphoses

Polar levels and their transitions

These relationships turn stage by stage into their opposite when a regular polyhedron,
through depressing the corners and buckling the surfaces, step by step is changed via
Archimedean (or polar-Archimedean) solids into its polar-opposite solid.

Figure 56: Buckling and depressing regular polyhedra (hexahedron and octahedron)

Dynamic metamorphoses between poles

Every regular, even semi-regular solid can be changed into its polar opposite. First a
simple observation. When a force moves towards a point, where the point offers no resis-
tance, the force continues in the same direction beyond the point, leaving it as soon as it
has reached it.

Figure 57: A force of direction passing through a point

In a similar manner one can observe the surfaces of any polyhedron as formed by
forces which are effective from outside, and the corners as the counter-force effective from
inside. If the force increases equally from all sides, the polyheadron becomes first smaller
and finally a point. If the forces continue undiminished in the same direction, instead of
forming surfaces from the outside they form corners from the inside. A polyhedron comes
about which is the polar opposite of the initial polyhedron.

The important thing with this example is the sudden change of the one thing into the
other. This comes about through the dynamic of the whole process in going through the
zero-point. The concept of infinity in its smallest form, the point, here marks an essential
turning point of metamorphosis.

In a similar manner one can think the transition of the temple to the basilica, or the
change in imagining a (merely) convex to an (also) concave polyhedron.
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Figure 58: Metamorphosis of directions of force in going through a point (hexahedron
and octahedron)
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Inversion — turning inside out

Paul Schatz

Paul Schatz (1898—1979) was one of the first to recognise the importance of the theme
Umstülpung, inversion, or more accurately, a turning inside out. He researched it compre-
hensively as a dynamic method through which the infinitely small, rhythmically recurring,
can be changed into the infinitely large — and vice versa. He demonstrated how space en-
tire turns completely inside out, that is, its inner side turns outwards and vice versa.

Inversion of the cube and of space

First Schatz discovered that the cube as a (projective) complete polyhedron is able to
be turned inside out, and later that the principle applies to every polyhedron. Through
the model of Schatz’s cube, one can show very well the (projective) inversion of the
entire space — the planes of the cube tip sideways through six mobile joints until they
reach a level prior to reforming, this time to a hollow cube. The change has taken place
from inside to outside. Through further development the cube returns to its original form,
following a cyclical and rhythmical movement of inversion.

Platonic inversion

All regular polyhedra can be inverted, that is, turned inside out. A special form of inver-
sion was discovered by Immo (*1936), Franz (*1935) and Friedemann Sykora (*1961). In
addition to the complete inversion of space it was discovered that all geometrical elements
of a regular polyhedron can be turned inside out at the same time — corners, edges, sur-
faces and volume. Konrad Schneider (*1954), Wolfgang Maas (*1954) and Robert Byrnes
(*1944) were involved in this research and made some discoveries. With the example of
the invertible cube of Schneider, the above-described process is demonstrated. This in-
version, with reference to the perfection of Platonic solids, is described as the Platonic
inversion.

Technological application and use

Linkages

Schatz’s cube can be technically described as a sixfold linkage, which possesses one de-
gree of freedom. The mobility motion of this linkage is consequently only possible in two
directions — forwards and backwards.

As the basis for a technological application of the inversion, only such polyhedra-
inversions are suitable. Klaus Ernhofer (*1962) found a total of twelve possibilities to
invert regular polyhedra with a sixfold chain of joints. He also developed the prototype of
a machine (pulsina) whose inversion-movements derive from the inversion of the dodec-
ahedron.
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Figure 59: Inversion of space through the example of a cube
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Figure 60: Platonic inversion — invertible cube of Konrad Schneider
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Figure 61: Sixfold linkage in the cube

Inversion — a new kinematic kind of movement

From the discovery of inversion, Paul Schatz found a new kinematic kind of movement,
the inversion (translation and rotation are already known). This kind of movement is a
looping, pulsing movement in space which, with processes of acceleration and deceler-
ation, always rhythmically returns to its starting point. Technically this can be applied
where rotating starting energy is transferred through a corresponding mechanism into in-
version movement.

Turbula technology

With the turbula and similar machines (holdyna, inversina), a cylindrical container is in-
versively moved through two axes rotating in opposite directions. Through two mobile
arms the rotating is translated into an inverse movement. It is used in the mixing of fluid
and solid matter, e.g. paint and medicines.

Oloid and oloid technology

The form of the oloid can be directly gained out of the inversion of Schatz’s cube. It is
similar to the windscreen-wiper which as a space-time surface creates a free surface on a
windscreen for the view of the driver. The surface of the oloid is formed through the path
taken by the diagonal of Schatz’s cube moving through space in an inversion-cycle. The
start and transmission of the turbula and the oloid are in principle the same. In contrast
to the turbula, the oloid moves the surrounding space. The oloid is used as a aerator over
water-surfaces or as an agitator under the surface of water. Oloid technology is especially
used in treating stagnant water, in sewage works, and in aquariums.
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Figure 62: Turbula

Figure 63: Oloid
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Figure 64: Oloid in use

Advantages in its use

Turbula technology as well as oloid technology have proved to be homogenous, thorough
and non-destructive. The special efficiency (compared to rotational technical alternatives,
c. 6/7 saving of energy is possible) of this technology is due to the special rhythmical
manner of movement which is very similar to the movement of flowing water and that of
fishes.

Conclusions

With the example of the various historical presentations it was shown in what manner
perceptions and conceptions of space depend on the spatial relationship of the observer
to his/her object. The more flexibly the observer thinks and imagines, the more compre-
hensive is his/her relationship. In the inversion, or turning inside out, the maximum of
flexibility is connected with a geometrically strictly lawful and systematic sequence to
change the standpoint and with it completely to lay hold of space in its infinite aspect.

Looking at the development of the ability to understand space chronologically, as
has been presented, it is possible to recognise in a historical development how inversion
can be grasped out of the individual aspects of space and their metamorphoses. Further-
more, one can see that only inversion contains all the geometrical elements through which
the whole of space can be taken hold. That this knowledge is the starting point of a com-
pletely new technology based on the movement of inversion, emphasises the fact that
conscious and reflective perception ultimately not only determines conceptualising and
thinking but also action. The discovery of inversion is a very recent one in the geometri-
cal field as well as the technological field. Consequently, we may look forward to future
technological developments, and I would like to invite you to take part actively or pas-
sively in further research.

All the models, illustrations and machines mentioned in the text will be shown in a
demonstration.
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